If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x-350=0
a = 1; b = -20; c = -350;
Δ = b2-4ac
Δ = -202-4·1·(-350)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-30\sqrt{2}}{2*1}=\frac{20-30\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+30\sqrt{2}}{2*1}=\frac{20+30\sqrt{2}}{2} $
| (7x-4)/3=-4 | | -2(x-15)=-28 | | m+6m-8+3=7m-6+1 | | 4(y-3)-y=3y-4 | | (X+3x)+5=37 | | 13w+15w-7+2=-2w+2-7 | | -8q-18=-7q-23 | | 2x+8+2x-13=x | | 10x+3=9x+1 | | -2x+-15=-28 | | 19x–19=4x–19 | | -7+4x=1-1x | | 37x+53+-39+-43x=53x+99+0x | | 125=0.01(a^2)+0.05a+107 | | 126=2(2w-6)+2w | | -9k-9=-2k-8k | | 7x+9=6x+6 | | -7+1+2x=21 | | 5+3.5x=50-3.5x | | -2x–4=-2(x+12) | | 7x+17+8x+2=90 | | t-(100)=0.5 | | x+1=-4+6x | | -7x+1+2x=2 | | 14=-6x+7x+7 | | (x^2-2x)/x=0 | | 5-4n=15 | | -y+2(4=y)=27 | | 2(-4.5)+3=4(m-3)+5.5 | | 3(n+5)+2=58 | | 14-5w=50-4w | | 0.125x^2+0.5x+1=0 |